Home

An investigation of the EPR zero-field splitting of Cr^{3+} ions at the tetragonal site and the Cd^{2+} vacancy in RbCdF₃:Cr³⁺ crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys.: Condens. Matter 12 4091 (http://iopscience.iop.org/0953-8984/12/17/314)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.221 The article was downloaded on 16/05/2010 at 04:52

Please note that terms and conditions apply.

An investigation of the EPR zero-field splitting of Cr³⁺ ions at the tetragonal site and the Cd²⁺ vacancy in RbCdF₃:Cr³⁺ crystals

Zi-Yuan Yang

Department of Physics, Baoji College of Arts and Science, Baoji 721007, People's Republic of China

Received 6 October 1999, in final form 8 February 2000

Abstract. The quantificational relationship between the EPR zero-field splitting parameter *D* and the structure parameters of the tetragonal Cr^{3+} centre in RbCdF₃: Cr^{3+} crystals has been established according to the superposition model and third-order perturbation theory. The existence of the Cd^{2+} vacancy and the lattice distortion have been verified. Meanwhile, we obtain that the F⁻ ion moves toward the central Cr^{3+} ion by $X_1 = 0.0031$ nm, $X_2 = 0.00101$ nm, $X_3 = 0.002$ 81 nm. Good agreement between the theoretical results and the experimental values shows that the assumption of the Cd^{2+} vacancy and the lattice distortion is reasonable. Although the main source of the tetragonal crystal field comes from the Cd^{2+} vacancy caused by the charge compensation, the contribution of the lattice distortion cannot be neglected.

1. Introduction

RbCdF₃:Cr³⁺ has attracted much attention because of its excellent optical qualities for laser applications. Perfect RbCdF₃ crystals have cubic structure; the local symmetry around the Cd²⁺ ion is O_h; the Cd²⁺ ion is surrounded by six F⁻ ions. Trivalent Cr³⁺ ions replace divalent Cd²⁺ ions when doped into RbCdF₃ crystals. Nevertheless, the EPR experiment [1] shows that the Cr³⁺ ion is in a tetragonal axial symmetry environment at T = 300 K. This result implies that the local structure of the Cr³⁺ ion induces tetragonal lattice distortion and the local symmetry around the Cr³⁺ ion changes from O_h to C_{4v}. So far there is no satisfactory theoretical work explaining all of these experimental findings.

The present work suggests that the tetragonal crystal field of the Cr^{3+} ion in RbCdF₃ crystals comes from the following two origins:

- (a) The nearest-neighbour Cd²⁺ vacancy caused by the charge compensation in the [001]-axis direction.
- (b) The lattice distortions of the nearest-neighbour fluorine coordination caused by the Cd²⁺ vacancy and the differences in mass, charge and radius between the Cr³⁺ ion and Cd²⁺ ion.

Following the above idea, the relationship between the EPR zero-field splitting D and crystal structure for Cr^{3+} in RbCdF₃ crystals has been established according to the superposition model and third-order perturbation theory. The EPR zero-field splitting parameter D has been investigated, taking into account both the effect of lattice distortion and the Cd²⁺ vacancy itself; the calculated result (D = -0.05693 cm⁻¹) is in excellent agreement with the experimental result (D = -0.05693(5) cm⁻¹).

0953-8984/00/174091+06\$30.00 © 2000 IOP Publishing Ltd

4092 Zi-Yuan Yang

2. Theory

 Cr^{3+} is a $3d^3$ ion; the appropriate spin Hamiltonian is given as

$$H_s = \beta_g H S + D[S_z^2 - \frac{1}{3}S(S+1)]$$
(1)

for C_{4v} symmetry, where the first term is the Zeeman interaction and D is the EPR zerofield splitting parameter. In cubic symmetry, D = 0. Under the combined influence of spin–orbit coupling and the tetragonal crystal field, the tetragonal ${}^{4}A_{2}$ ground state is split into two Kramers doublets of separation 2D. It is known that the EPR zero-field splitting is very sensitive to variation of the crystal structure parameters. Thus one can determine approximatively displacement of all F⁻ ions surrounding the Cr³⁺ ion from the EPR zero-field splitting parameter and optical spectra.

With consideration of the combined effect of the tetragonal-field and spin–orbit coupling and utilization of the third-order perturbation theory given by Macfarlane [2], the EPR zero-field splitting parameter D of the Cr³⁺ cluster in the ground state is given by

$$D = \frac{1}{3}\xi^2 \mu \left(\frac{1}{D_1^2} - \frac{1}{D_3^2}\right) - \frac{4}{9}\xi^2 \delta \left(\frac{1}{D_3^2} - \frac{1}{D_1^2}\right) - \frac{B\xi^2}{D_2 D_3^2} (3\mu - 4\delta)$$
(2)

where μ and δ denote the net tetragonal crystal parameters, and they vanish identically in cubic symmetry. ξ is the spin orbit coupling coefficient in crystal. By means of the cubic crystal field parameter Dq and Racah parameters B and C, energy D_i in the denominators are written as follows

$$D_{1} = E({}^{4}T_{2}) - E({}^{4}A_{2}) = 10Dq$$

$$D_{2} = E(a^{2}T_{2}) - E({}^{4}A_{2}) = 15B + 4C$$

$$D_{3} = E(b^{2}T_{2}) - E({}^{4}A_{2}) = 10Dq + 9B + 3C.$$
(3)

It is convenient to define

$$\mu = -\frac{4}{7}B_{20} - \frac{5}{21}B_{40} + \frac{10}{3\sqrt{70}}B_{44}$$

$$\delta = -\frac{3}{7}B_{20} + \frac{5}{21}B_{40} - \frac{10}{3\sqrt{70}}B_{44}$$
(4)

where B_{kq} are the crystal field parameters.

The Newman superposition model [3, 4] has proved to be a powerful tool in probing the local structure of the ${}^{4}A_{2}$ state ion in a variety of single crystals. In particular this method has been successfully applied to gain very detailed information on the lattice site and crystalline environment of Cr³⁺ ions in a crystal [5–8]. According to the superposition model the crystal field parameters B_{kq} are given as

$$B_{kq} = \sum_{j} \overline{A}_{k}(R_{j}) f_{kq} K_{kq}(\theta_{j}, \phi_{j})$$
(5)

where (R_j, θ_j, ϕ_j) denotes the coordinates of the *j*th ligand; $f_{20} = 2$, $f_{40} = 8$, $f_{44} = 8/\sqrt{70}$ and K_{kq} are given as

$$K_{20} = \frac{1}{2} (3 \cos^2 \theta - 1)$$

$$K_{40} = \frac{1}{8} (35 \cos^4 \theta - 30 \cos^2 \theta + 3)$$

$$K_{44} = \frac{35}{8} \sin^4 \theta \cos 4\phi.$$
(6)

The $\overline{A}_k(R_i)$ (k = 2, 4) are called intrinsic parameters and they are expressed as

$$\overline{A}_{k}(R_{j}) = \overline{A}_{k}(R_{0}) \left(\frac{R_{0}}{R_{j}}\right)^{t_{k}}$$
(7)

Figure 1. Local structure of Cr³⁺ in RbCdF₃:Cr³⁺ crystals.

where the reference distance R_0 (0.22 nm) [1] is taken as the Cr–F distance in the cubic site. In the calculation, $t_2 = 4$ and $t_4 = 6$ are adopted [3].

According to the usual method [6, 7], the effect of the Cd^{2+} vacancy caused by the charge compensation is equivalent to a negative point charge -2|e| located at the position of the vacancy (which is $2R_0$ from Cr^{3+}), namely, it is equivalent to two F⁻ ions at the Cd^{2+} position in the perfect lattice. Utilizing (5)–(7) the crystal field parameters induced by the Cd^{2+} vacancy are given as

$$B_{20} = \overline{A}_2(2)^{1-t_2}$$

$$B_{40} = \overline{A}_4(2)^{3-t_4}$$

$$B_{44} = 0.$$
(8)

Owing to the Cd^{2+} vacancy and the difference in mass, charge and radius between Cr^{3+} (0.063 nm) and Cd^{2+} (0.103 nm), the local structure of the Cr^{3+} will induce a tetragonal lattice distortion, namely, there is an inward displacement of all F^- ions surrounding the Cr^{3+} ion (see figure 1). By means of (5)–(7), the crystal field parameters due to the lattice distortion are given as

$$B_{20} = 2\overline{A}_2(Q_1^{t_2} + Q_2^{t_2} - 2Q_3^{t_2})$$

$$B_{40} = 4\overline{A}_4(2Q_1^{t_4} + 2Q_2^{t_4} + 3Q_3^{t_4})$$

$$B_{44} = 2\sqrt{70}\overline{A}_4Q_3^{t_4}$$
(9)

where $Q_1 = R_0/(R_0 - X_1)$, $Q_2 = R_0/(R_0 - X_2)$, $Q_3 = R_0/(R_0 - X_3)$. X_1, X_2 and X_3 are the lattice distortion parameters (see figure 1).

It can be seen from the above discussions that the EPR zero-field splitting is related to the lattice distortion parameters X_1 , X_2 and X_3 for the defect centre in RbCdF₃:Cr³⁺ crystals. However, before making calculations, we need values of the parameters B, C, Dq and ξ . The spin–orbit coupling parameter is taken as 217 cm⁻¹ [10]. In order to determine the values of Dq, B and C, the optical spectra in cubic RbCdF₃:Cr³⁺ crystals are calculated. A comparison of theory and experiment is given in table 1. It can be seen that the theoretical results are in agreement with experiments. The obtained values Dq, B and C will be used in the following calculation. According to the relationship $\overline{A}_4 = \frac{3}{4}Dq$ [11] and $\overline{A}_2 \approx 10.8\overline{A}_4$ [12], we obtain $\overline{A}_4 = 1065$ cm⁻¹ and $\overline{A}_2 = 11502$ cm⁻¹.

4093

Transition	Theoretical values	Experimental values [9]
${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{2}({}^{4}F)$	14 200	14 180
${}^{2}E({}^{2}G)$	15 550	15 550
${}^{2}T_{1}({}^{2}G)$	16310	
${}^{4}T_{1}({}^{4}F)$	21 359	21 300
${}^{2}T_{2}({}^{2}H)$	22716	
${}^{2}A_{1}({}^{2}G)$	27 270	
² T(² G)	29 667	
${}^{2}T_{1}({}^{2}H)$	30 286	
${}^{2}E({}^{2}_{2}D)$	32116	
${}^{4}T_{1}({}^{4}P)$	33 241	33 300
$D_q = 1420 \text{ cm}^{-1}$	$B=800~{\rm cm}^{-1}$	$C = 3290 \text{ cm}^{-1}$

Table 1. The optical spectra of Cr^{3+} in cubic RbCdF₃: Cr^{3+} crystals (cm⁻¹).

Table 2. The EPR zero-field splitting parameter D of Cr^{3+} in RbCdF₃ crystals.

	$\mu ~(\mathrm{cm}^{-1})$	$\delta (\mathrm{cm}^{-1})$	$D (10^{-4} \text{ cm}^{-1})$
Cubic site	0	0	0
Cd ²⁺ vacancy	-853.3	-584.5	-1005.4
Distortion	463.5	193.2	436.1
Total	-389.8	-391.3	-569.3
Experiment [1]			-569.3(5)

3. Results and discussion

From the above, it is seen that the EPR zero-field splitting parameter *D* can be obtained utilizing (2) as long as the location of Cr^{3+} in RbCdF₃ (i.e. its coordinates (R_i, θ_i, Φ_i)) is known. The calculated results are listed in table 2.

The point symmetry around the Cr^{3+} ion reduces from O_h to C_{4v} when Cr^{3+} replaces the Cd^{2+} ion in RbCdF₃ crystals. The Cd^{2+} vacancy induced by the charge compensation gives rise to a contribution to tetragonal crystal field components with $\mu = -853.3$ cm⁻¹ and $\delta = -584.5$ cm⁻¹. By using these parameters and the values of Dq, B, C and ξ , we obtain $D = -1005.4 \times 10^{-4}$ cm⁻¹, which is remarkably greater in magnitude than the experimental findings (-569.3×10^{-4} cm⁻¹) despite the correct sign (see table 2). This shows that a lattice distortion must occur and play a significant role in contributing to the EPR zero-field splitting. Moreover, the radius of the Cr^{3+} (0.063 nm) ion is much smaller than that of the host Cd^{2+} (0.103 nm) ion, and the charge of the Cr^{3+} ion and F^- ion is greater than that between Cd^{2+} and the F^- ion. It is reasonable to assume the six F^- move towards the central magnetic Cr^{3+} ion in such an ionic crystal where the Coulomb interaction serves as the main crystallized source [3, 13].

Considering the combined contribution of the lattice distortion ($X_1 = 0.0031$ nm, $X_2 = 0.00101$ nm, $X_3 = 0.00281$ nm) and the Cd²⁺ vacancy itself to the EPR zero-field splitting parameter *D*, it can easily be seen from table 2 that the theoretical result is in agreement with experiment. On the other hand, if we allowed $X_3 \gg X_1$, we would obtain another set of values, which would give an equally good fit. In fact, owing to the existence of the Cd²⁺ vacancy on the [001]-axis, X_1 must be greater than X_2 or X_3 . Because of this, Takeuchi *et al* [14] omitted X_2 and X_3 , and obtained $X_1 = 0.0104$ nm for RbCdF₃:Fe³⁺ crystals and

 $X_1 = 0.0112$ nm for CsCdF₃:Fe³⁺ crystals. In their calculations, the contribution of the Cd²⁺ vacancy itself to the EPR zero-field splitting parameter has been ignored. In our present case, we find that the contribution of X_1 (or X_2) to the EPR zero-field splitting parameter D is negative, and the contribution of X_3 to the EPR zero-field splitting parameter D is positive. If we consider only X_1 , we can also fit the D value which is in agreement with experiment. However, the contribution of the Cd²⁺ vacancy itself to the EPR zero-field splitting parameter D must be considered [7]. If we consider only X_1 and the Cd²⁺ vacancy itself, we obtain the value $D = -1898 \times 10^{-4}$ cm⁻¹, which is greater in magnitude than the $D = -1005.4 \times 10^{-4}$ cm⁻¹ induced by the Cd²⁺ vacancy itself, of course, which are remarkably greater in magnitude than experiment findings (-569.3×10^{-4} cm⁻¹). This shows that movements (X_3) of the four planar F⁻ ions have to be taken into account [13]. Because the final equilibrium positions of F⁻ ions around the Cr³⁺ ion depend on the whole crystal field when Cr³⁺ replaces the Cd²⁺ ion in RbCdF₃ crystals, the similarity of X_1 and X_3 is comprehensible.

It is worthwhile to point out that a tetragonal Fe^{3+} centre has been found by EPR experiment [15] in addition to a trigonal Fe^{3+} centre [16] in KZnF₃:Fe³⁺ flouoroperovskite crystals. The tetragonal Fe^{3+} centre is ascribed to the nearest-neighbour Zn^{2+} vacancy caused by the charge compensation on the tetragonal axis [15]. The trigonal Fe^{3+} centre is ascribed to the nearest-neighbour K⁺ vacancy caused by the charge compensation on the tetragonal lattice distortion in KZnF₃:Fe³⁺ has been gained from electron-nuclear double-resonance (ENDOR) experiments by Krebs and Jeck [16]; they have found that the front three ligand F^- ions around the Fe^{3+} ion rotate 2.8° away from the [111]-axis while the back three ligand F^- ions around the Fe^{3+} ion rotate 1.1° toward it.

4. Conclusion

 Cr^{3+} impurities substitute for Cd^{2+} when they are doped into RbCdF₃ crystals. Owing to the charge compensation, a Cd^{2+} site on the [001] axis will be vacant. Meanwhile, the Cd^{2+} vacancy and the differences in mass and radius between the Cr^{3+} ion and Cd^{2+} ion induce the lattice distortion: there is an inward displacement of all F⁻ ions surrounding the Cr^{3+} ion by $X_1 = 0.0031$ nm, $X_2 = 0.00101$ nm, $X_3 = 0.00281$ nm. The main source of the EPR zero-field splitting parameter *D* comes from the Cd²⁺ vacancy, but contribution arising from the lattice distortion to the parameter *D* cannot be neglected.

Acknowledgments

This work has been supported by the Education Committee of Shanxi Province and by the Natural Science Foundation of Shanxi Province. The author is grateful to Professor Yu Wan Lun for helpful assistance.

References

- [1] Takeuchi H and Arakawa M 1984 J. Phys. Soc. Japan 53 376
- [2] Macfarlane R M 1967 J. Chem. Phys. 47 2066
- [3] Newman D J and Ng B 1989 Rep. Prog. Phys. 52 699
- [4] Yeung Y Y and Newman D J 1986 Phys. Rev. B 34 2258
- [5] Rudowicz C 1988 Phys. Rev. B 37 27
- [6] Zheng W C 1987 Phys. Status Solidi b 143 217
- [7] Yu W L 1993 Acta Phys. Sin. 2 610 (in Chinese)
- [8] Yang Z Y and Yu W L 1998 Chin. J. Chem. Phys. 11 422
- [9] Villacampa B, Casas J, Alcala R and Alonso P J 1991 J. Phys.: Condens. Matter 3 8281

4096 Zi-Yuan Yang

- [10] Pilla O, Galvanetto E, Montagna M and Villiani G 1988 Phys. Rev. B 38 3447
- [11] Yu W L and Zhao M G 1988 Phys. Rev. B 37 9254
- [12] Newman D J, Pryce D C and Runciman W A 1978 Am. Mineral. 63 1278
- [13] Murrieta S H, Rubio O J and Aguilar S G 1979 Phys. Rev. 52 699
- [14] Takeuchi T, Arakawa M and Ebisu H 1987 J. Phys. Soc. Japan 56 3677
- [15] Binois M, Leble A, Rousseau J J and Fayet J C 1973 J. Physique Coll. 34 C9 285
- [16] Krebs J J and Jeck K K 1972 Phys. Rev. B 5 3499